Leaderboard
Popular Content
Showing content with the highest reputation since 11/07/2025 in all areas
-
5 points
-
4 points
-
Version 1.0
6 downloads
Syberia Remastered Localization Tool (2025) * Syberia Remastered Localization Tool.py Required: Python. When installing, make sure to check “Add python.exe to PATH.” Usage: * Copy the LocalizationModule file into the same folder as the .py file. * Run the .py file (double-click it). * In the window that opens, select the language you want to edit. * Export the text into a .tsv file. * Add your translation in the Translation column. * Run the .py file again and import your translation back in. * The new file will be created with the NEW_ suffix. Tested with latest steam Build (20969727) FEARka3 points -
3 points
-
I've just released new version of ImageHeat 🙂 https://github.com/bartlomiejduda/ImageHeat/releases/tag/v0.39.1 Changelog: - Added new Nintendo Switch unswizzle modes (2_16 and 4_16) - Added support for PSP_DXT1/PSP_DXT3/PSP_DXT5/BGR5A3 pixel formats - Fixed issue with unswizzling 4-bit GameCube/WII textures - Added support for hex offsets (thanks to @MrIkso ) - Moved image rendering logic to new thread (thanks to @MrIkso ) - Added Ukrainian language (thanks to @MrIkso ) - Added support for LZ4 block decompression - Added Portuguese Brazillian language (thanks to @lobonintendista ) - Fixed ALPHA_16X decoding - Adjusted GRAY4/GRAY8 naming - Added support section in readme file2 points
-
2 points
-
Thanks for some info from here and made a tool for unpacking and packing localize map files, if someone is interested in it. https://github.com/dest1yo/wwm_utils2 points
-
Version 1.1
526 downloads
Tools for Battlefield 6 beta. Currently supports dumping the game, export models/maps. Usage is similar to previous tools for frostbite engine. toc_bf6.exe - dump tool Change .ini file parameters: - game path - dump path - selection to dump "ebx", "res", "chunks" or "all" Then drop any .toc file onto .exe to dump assets. Or run from command line with 1 parameter - toc file name. Fb_bf6_mesh.exe - model tool Takes .MeshSet as parameter. ske_soldier_3p.ebx - main universal skeleton for soldiers. Must be in the same folder. If you need another skeleton, use its name as 2nd parameter. Or rename it to ske_soldier_3p.ebx. Tool will try to find chunks automatically. If not, it gives error message with chunk name. Map export 1. Create database Run fb_maps_bf6_db.exe tool once, it will scan whole dump for meshsets and blueprints, so later maps can be converted fast, without the need to go into whole tree of assets. This will take a few minutes. After that, 2 files will be created: bp.db & meshnames.txt, which need to stay in the same folder with EXE for main tool to work. 2. Export maps Use fb_maps_bf6.exe (main map tool) to convert maps. Drop any EBX on it, use in command line with 1 parameter, or create a batch. 3. Terrain export Main terrain data is in .TerrainStreamingTree files for each level. For some levels, these files are small, which means the actual data is in chunks. Sometimes data is in the file itself, in this case it may be big, about 50mb in size. Drop .TerrainStreamingTree on fb_terrain_bf6.exe or use command line.2 points -
Animation file from FGO arcade, uses the same engine as various Project DIVA titles but the animation files are formatted in a different way. .mot Tool: https://github.com/h-kidd/noesis-project-diva (works with FGO Arcade's model files and .mot files from Miracle Girls Festival and Project DIVA but it doesn't work with FGO Arcade's .mot files, but you can edit the source code of the tool to try to make it work with the game's .mot files) Sample file is in the attachment. mot_svt_0001.zip1 point
-
You could check the MakeH2O_log.txt. If you find a structure like 12 4 4 4 4 4 (for example) the last "4 bytes block" might be alpha uvs (just a wild guess). edit: it's 16 8 8 4 4 here Try using 82ea3, 4 for uvs. Looks promising.1 point
-
I think you've already set up the aes-key and the correct version of Octopath Traveler 0 (5.4) on fmodel. You need to add the usmap file, which I attached. To do this, go to Settings->Mapping File Path and select the game's usmap file. Then, in Fmodel, navigate to the correct folder (e.g., Content/Local/DataBase/GameText/Localize/EN-US/SystemText/GameTextUI.uasset) and export the file to .json, with right-click and then Save properties (.json).1 point
-
I am attaching the fmodel json file. With uassetgui, what procedure did you follow to obtain that result? Maybe I'm missing something, as this is the first time I've used uassetgui. Edit: Ah ok, thanks, with .\UAssetGUI tojson GameTextUI.uasset GameTextUI.json VER_UE5_4 Mappings.usmap I can get the base64 code, but it is unreadable: ����������m_DataList�d��m_id��m_gametext��No data.�������������m_id�m_gametext��Held�������������m_id �m_gametext��None�������������m_id! GameTextUI_fmodel.rar1 point
-
1 point
-
ImageHeat v0.39.2 (HOTFIX) https://github.com/bartlomiejduda/ImageHeat/releases/tag/v0.39.2 Changes: - Fixed hex input - Changed endianess and pixel formats bindings (required for hex input fix)1 point
-
So here's pixel format for ps4. PF_DXT5 = 7 PF_DXT1 = 13 PF_BC7U = 22 PF_UNKNOWN = 2 not sure but can be RGBA1 point
-
This file stores luac and dat data, so it cannot be processed using the unityfs split script. I wrote a new split script to experimentally disassemble the file content you provided and decompile the lua file. If you want to decompile please enable the -j parameter Basic usage (no decompilation) python pkg.py input.patch output_dir With decompilation (slower) python pkg.py input.patch output_dir -j For decompilation, please download unluac from other locations. After compilation, place the .jar file in the same directory as the script. Due to different compilation environments, errors may occur, so unluac needs to be compiled by yourself. pkg.py1 point
-
I remember to make a request in your github about it. 👍 Somehow, we were not able to see these textures in ImageHeat, only after extraction and decompression. Anyway, for the Switch textures it seems to be an issue as h3x3r said above and I confirm it too. In the attachment you find all the textures in UNIFORM.TEX (including jersey-color) from the Switch version already decompressed. The stock texture file is in the Switch files in the first post (UNIFORM.TEX). In the screenshot below you see the parameters for the jersey-color texture. Maybe useful when you have time to check it to help you fix ImageHeat. UNIFORM Switch decompressed.zip1 point
-
1 point
-
O.K. so here's script for ps4 format. Inside unpacked file is texture width/height and pixel format all in 6 bytes. Rest is image data. Also i don't know about pixel fomat so you must figure out. get BaseFileName basename comtype lz4 getdstring Sig 0x8; get Unknown_0 uint32 get Unknown_1 uint32 getdstring Platform 0x4 get TextureCount uint32 get Unknown_2 uint32 get UnknownCount uint32 get TotalCompressedSize uint32 get TotalDecompressedSize uint32 get Unknown_6 uint32 get Unknown_7 uint32 for i = 0 < TextureCount getdstring TextureName[i] 0x40 getdstring Unknown_0 0x10 get CompressedSize[i] uint32 get Offset[i] uint32 # + BaseOffset get Unknown_3 uint32 get DecompressdSize[i] uint32 get Unknown_4 ushort get Unknown_ ushort get Unknown_6 uint32 get Unknown_7 uint32 get Unknown_8 uint32 savepos WidthHeightPos[i] get TextureWidth ushort get TextureHeight ushort get Unknown_9 uint32 savepos PixelFormatPos[i] get PixelFormat ushort get Unknown_10 ushort get Unknown_11 uint32 getdstring Unknown_12 0x4 get Unknown_13 uint32 get Unknown_14 ushort get Unknown_15 ushort get Unknown_16 uint32 getdstring Null 0x10 next i math UnknownCount * 40 getdstring UnkInfo UnknownCount savepos BaseOffset for i = 0 < TextureCount math Offset[i] + BaseOffset string FileName p= "%s/%s.dat" BaseFileName TextureName[i] append 0 log FileName WidthHeightPos[i] 4 log FileName PixelFormatPos[i] 2 clog FileName Offset[i] CompressedSize[i] DecompressdSize[i] next i1 point
-
1 point
-
I've moved this topic to graphic file formats, rather than 3d Models where you posted it. Also, please don't start another post for the exact same thing. I've deleted your other post as a duplicate. Please read the rules before posting again.1 point
-
The game have update and they hard-coded new text in .mpk lua script, because some words have many different meaning depend on the context. With packet sniffing, i observed that the game download some .pak file from easebar.com and put them in .mpk file. These file are encrypted.1 point
-
It's Unity, but seems to have a protection layer so it can't be opened in Asset Studio. Game Assembly: https://www.mediafire.com/file/3i7kvobi4nacnbh/GameAssembly.zip/file THO.zip1 point
-
I made a blender addon to import models, textures and animations for dolphin wave and other games that used the same engine. it can import lzs and lza files as is. You don't need to decrypt or decompress the files https://github.com/Al-Hydra/blenderBUM1 point
-
To whoever ends up here in the future, there is a really simple to use utility to convert files from Xbox ADPCM to PCM and vice-versa on Github: Sergeanur/XboxADPCM Thanks for the thread, I really thought the WAV files I had were lost forever due to an obsolete codec..! In my case, I am porting the PT-BR voiceover of Max Payne from PC to Xbox, which I am surprised wasn't done before.1 point
-
When i get home, i will compile the decompressor/compressor unpack and pck tool, is one all tool. std::vector<uint8_t> compressLZSSBlock(const std::vector<uint8_t>& input) { const int MIN_MATCH = 3; // comprimento mínimo para virar par const int MAX_MATCH = 17; // (0xF + 2) const int DICT_SIZE = 4096; const size_t n = input.size(); // Dicionário igual ao do descompressor std::vector<uint8_t> dict_buf(DICT_SIZE, 0); size_t dict_index = 1; // mesmo índice inicial do descompressor size_t producedBytes = 0; // quantos bytes já foram "gerados" (saída lógica) std::vector<uint32_t> flagWords; uint32_t curFlag = 0; int bitsUsed = 0; auto pushFlagBit = [&](bool isLiteral) { if (bitsUsed == 32) { flagWords.push_back(curFlag); curFlag = 0; bitsUsed = 0; } if (isLiteral) { // bit 1 = literal (mesmo significado do descompressor) curFlag |= (1u << (31 - bitsUsed)); } ++bitsUsed; }; std::vector<uint8_t> literals; std::vector<uint8_t> pairs; literals.reserve(n); pairs.reserve(n / 2 + 16); size_t pos = 0; while (pos < n) { size_t bestLen = 0; uint16_t bestOffset = 0; if (producedBytes > 0) { // tamanho máximo possível para este match (não pode passar do fim do input) const size_t maxMatchGlobal = std::min(static_cast<size_t>(MAX_MATCH), n - pos); // percorre todos os offsets possíveis do dicionário for (int off = 1; off < DICT_SIZE; ++off) { if (dict_buf[off] != input[pos]) continue; // --- SIMULAÇÃO DINÂMICA DO DESCOMPRESSOR PARA ESTE OFFSET --- uint8_t candidateBytes[MAX_MATCH]; size_t candidateLen = 0; for (size_t l = 0; l < maxMatchGlobal; ++l) { const int src_index = (off + static_cast<int>(l)) & 0x0FFF; // valor em src_index, levando em conta que o próprio bloco // pode sobrescrever posições do dicionário (overlap) uint8_t b = dict_buf[src_index]; // Se src_index for igual a algum índice de escrita deste MESMO par // (dict_index + j), usamos o byte já "gerado" candidateBytes[j] for (size_t j = 0; j < l; ++j) { const int dest_index = (static_cast<int>(dict_index) + static_cast<int>(j)) & 0x0FFF; if (dest_index == src_index) { b = candidateBytes[j]; break; } } if (b != input[pos + l]) { // não bate com o input, para por aqui break; } candidateBytes[l] = b; ++candidateLen; } if (candidateLen >= static_cast<size_t>(MIN_MATCH) && candidateLen > bestLen) { bestLen = candidateLen; bestOffset = static_cast<uint16_t>(off); if (bestLen == static_cast<size_t>(MAX_MATCH)) break; // não tem como melhorar } } } if (bestLen >= static_cast<size_t>(MIN_MATCH)) { // --- CODIFICA COMO PAR (offset, length) --- pushFlagBit(false); // 0 = par uint16_t lengthField = static_cast<uint16_t>(bestLen - 2); // 1..15 uint16_t pairVal = static_cast<uint16_t>((bestOffset << 4) | (lengthField & 0x0F)); pairs.push_back(static_cast<uint8_t>(pairVal & 0xFF)); pairs.push_back(static_cast<uint8_t>((pairVal >> 8) & 0xFF)); // Atualiza o dicionário exatamente como o DESCOMPRESSOR: // for (i = 0; i < length; ++i) { // b = dict[(offset + i) & 0xFFF]; // out.push_back(b); // dict[dict_index] = b; // dict_index = (dict_index + 1) & 0xFFF; // } for (size_t i = 0; i < bestLen; ++i) { int src_index = (bestOffset + static_cast<uint16_t>(i)) & 0x0FFF; uint8_t b = dict_buf[src_index]; dict_buf[dict_index] = b; dict_index = (dict_index + 1) & 0x0FFF; } pos += bestLen; producedBytes += bestLen; } else { // --- LITERAL SIMPLES --- pushFlagBit(true); // 1 = literal uint8_t literal = input[pos]; literals.push_back(literal); dict_buf[dict_index] = literal; dict_index = (dict_index + 1) & 0x0FFF; ++pos; ++producedBytes; } } // Par terminador (offset == 0) pushFlagBit(false); pairs.push_back(0); pairs.push_back(0); // Flush do último flagWord if (bitsUsed > 0) { flagWords.push_back(curFlag); } // Monta o bloco final: [u32 off_literals][u32 off_pairs][flags...][literais...][pares...] const size_t off_literals = 8 + flagWords.size() * 4; const size_t off_pairs = off_literals + literals.size(); const size_t totalSize = off_pairs + pairs.size(); std::vector<uint8_t> block(totalSize); auto write_u32_le = [&](size_t pos, uint32_t v) { block[pos + 0] = static_cast<uint8_t>(v & 0xFF); block[pos + 1] = static_cast<uint8_t>((v >> 8) & 0xFF); block[pos + 2] = static_cast<uint8_t>((v >> 16) & 0xFF); block[pos + 3] = static_cast<uint8_t>((v >> 24) & 0xFF); }; write_u32_le(0, static_cast<uint32_t>(off_literals)); write_u32_le(4, static_cast<uint32_t>(off_pairs)); size_t p = 8; for (uint32_t w : flagWords) { block[p + 0] = static_cast<uint8_t>(w & 0xFF); block[p + 1] = static_cast<uint8_t>((w >> 8) & 0xFF); block[p + 2] = static_cast<uint8_t>((w >> 16) & 0xFF); block[p + 3] = static_cast<uint8_t>((w >> 24) & 0xFF); p += 4; } std::copy(literals.begin(), literals.end(), block.begin() + off_literals); std::copy(pairs.begin(), pairs.end(), block.begin() + off_pairs); return block; } @morrigan my compressor, try it, and let me know the results.1 point
-
Yea, I'm working on BHD but mostly focused on the JO/DFX2 engine which is slightly newer and a different format. I'll post here when/if I get BHD usable.1 point
-
Just found these forums, that's my github in the OP. Happy to help. This may help you too https://github.com/taylorfinnell/on3diimporter/blob/main/on3diimporter.py1 point
-
You can either use this QuickBMS script to extract the msv audio files out of the rp2: get UNK long get FILES long goto 0x20 for i = 0 < FILES getdstring NAME 7 getdstring DUMMY 25 get OFFSET long get SIZE long get DUMMY2 long string NAME + ".msv" log NAME OFFSET SIZE next i Or you can use this txth file to play the audios out of the rp2 directly (needs vgmstream + an audio player like foobar2000): subsong_count = @0x04 subsong_spacing = 0x2c base_offset = 0x20 name_offset = 0x00 subfile_offset = @0x20 subfile_size = @0x24 subfile_extension = msv Save the text above as ".rp2.txth" and put it on the same directory as the rp2 file. Also if you're using foobar2000, make sure to check "Enable unknown exts" on the vgmstream preferences page.1 point
-
1 point
-
Bumping this again because I really don't want this thread to quietly die, as it seems the edits to my message are not enough to constitute a bump. Every single possible 16 bit float format I've tried does not work. Indicating this is some proprietary cursed format. Maybe a LUT. Maybe encrypted. Maybe something else. Which probably explains why the .mot files still have not been decrypted all these years. I do suspect what certain bits mean but I am really unsure. I have the model .bin and some other examples of .mot in hand as well so if you would like me to send it I will gladly do so. Just note I do need these files decrypted for a project so I would like this done as fast as possible it would be nice. What I do know is that this is little endian. Z-Y-X order. I have no clue what else. Help is much appreciated please 🙏 (I am not sure what y'all want but I am interested in a way to export the .mot to .csv with a Frame # column. For my application, that is enough.)1 point
-
Well, I did a little research on Flash Cookies (SOL files) and I put it all together in the article on RE Wiki https://rewiki.miraheze.org/wiki/Flash_Cookie_SOL I saw notes on your github and you were sligthly wrong with some fields, so you can compare it with my article on the wiki and make some corrections in your tool. The most important thing is that you should understand that SOL file is an Adobe format and payload (data block) follows AMF file format documented by Adobe https://web.archive.org/web/20220122035930/https://www.adobe.com/content/dam/acom/en/devnet/pdf/amf-file-format-spec.pdf So anything after data block header is a payload section that needs to be properly serialized by your tool. There are many tools that allow you proper serialization like: minerva, SOL Editor, Adobe AIR SDK, JPEXS Free Flash Decompiler etc. Some code for serializing is available on JPEXS github page: https://github.com/jindrapetrik/jpexs-decompiler/tree/master/libsrc/ffdec_lib/src/com/jpexs/decompiler/flash/sol https://github.com/jindrapetrik/jpexs-decompiler/tree/master/libsrc/ffdec_lib/src/com/jpexs/decompiler/flash/amf/amf3 You can test this code by going to Tools > Sol cookie editor in JPEXS Free Flash Decompiler: So you shouldn't ask "what are those three bytes". You should ask "how can I properly parse AMF3 serialized data" 🙂 There are lots of information (articles) about this, for example on wikipedia: https://en.wikipedia.org/wiki/Local_shared_object https://en.wikipedia.org/wiki/Action_Message_Format Good luck. 🙂1 point
-
Okay, thanks for the lead. I successfully uncompressed the PUD file, and it is indeed a container. The value 0x2 represents the number of files within it. The uncomressed images are raw pixel data and need to be combined with the PAL file to get the correct image. can use imageheat to view the correct image.1 point
-
fmt_psaVita_ValkyrieDrive.py Here's a old noesis plugin to view and export most of the mib, msb and mab of the PSVisa version of the game.1 point
-
by the way if you need names of audio files put thesescript.zip in AetherGazerLauncher\AetherGazer\AetherGazer_Data\StreamingAssets\Windows folder , run process.py then it will change every audio .ys files to proper names.1 point
-
Edit - just tested it and no 4 mrts is uv, you was right in saying the 4th one is the uv maps by the rule1 point
-
Anybody could share mot, tex_db.bin and a model file .bin of a character1 point
-
1 point
-
1 point
-
Because the fmlb and sound file does exits anymore because when before Game shutdown that files are dynamic content but some files like that are available in beta versión APK and obb but no all files1 point
-
Please use this updated script to repackage the data file. If you have any questions, please let me know so that other capable people or you can continue to process these .pxc files yourself # Update the decompression of pxc file(script 0.2) get FILE_SIZE asize xmath TOC_PTR "FILE_SIZE - 8" goto TOC_PTR get TOC_OFFSET long goto TOC_OFFSET get FILE_COUNT long for i = 0 < FILE_COUNT get OFFSET long get SIZE long get COMP_FLAG byte get NAME_LEN short getdstring NAME NAME_LEN get UNK long savepos TOC_ENTRY_POS if COMP_FLAG == 0 goto OFFSET getdstring MAGIC 4 if MAGIC == "PxZP" comtype zlib get UNCOMP_SIZE long get COMP_SIZE long savepos DATA_START clog NAME DATA_START COMP_SIZE UNCOMP_SIZE else log NAME OFFSET SIZE endif else goto OFFSET get MAGIC long get UNCOMP_SIZE long get COMP_SIZE long savepos COMP_START clog NAME COMP_START COMP_SIZE UNCOMP_SIZE endif goto TOC_ENTRY_POS next i pxc.zip1 point
-
Version 0.0.2
17 downloads
An addon for Blender 4.3.0 (also tested with 4.4.3) to import and export the .msh, .bn (.bbx goes together) and .ani files for RF Online. The entity (R3E) and map (BSP) formats are import only. Import operations work with drag and drop. There is code for exporting the BSP format inside the addon code but it is deactivated due to being incomplete. It only reaches so far as actually exporting walkable map geometry (with the BSP structure also built) and baking+exporting the light maps. Unfortunately, Blender proved to not be very suitable for the task of actually being a complete map editor for RF Online, mostly due to complexity issues with the .SPT particle format and other desirable features that would be hard to implement into it, such as mob spawn areas and portals. The R3M materials are also quite hard to simulate, since the original engine rendered the same mesh multiple times for each texture layer they had. It is possible to reactivate the feature by manually uncommenting the three commented lines in the bsp.py's menu_func_export, register and unregister functions. Expect no support for this feature, as the more proper solution would be writing a proper dedicated software. Current Features: MSH (Mesh) Import: Imports .msh static meshes (Standard and MESH08 formats). Automatically attempts to find and assign textures by looking for DDS files referenced in the mesh or by searching .RFS archives in expected relative paths (../Tex/). MSH (Mesh) Export: Exports selected Blender mesh(es) to .msh format (Standard or MESH08). Handles vertex data, UVs, weights, and bone assignments. The export ignores any collection with the name "bone shapes". BN (Skeleton) Import: Imports .bn skeleton files. Reads bone hierarchy and rest poses. Automatically looks for the corresponding .bbx file (must be same name, same folder) to get the proper skeleton name. Creates Blender Armature objects. Also imports custom bone shape geometry if defined in the BN file and creates mesh objects for them, assigning them as custom shapes in Blender. BN (Skeleton) Export: Exports a selected Blender Armature to .bn format. Calculates and exports the corresponding .bbx file with skeleton name and bounding box. Exports custom bone shape geometry if assigned. ANI (Animation) Import: Imports .ani animation files. Applies animations to compatible Armatures and/or Objects based on names found in the ANI file. Creates Blender Actions. Option to target selected objects or objects within a collection matching the ANI's base name. ANI (Animation) Export: Exports Blender Actions to .ani format. Bakes complex animations (constraints, drivers, NLA) before export. Options to export the active action, actions from selected objects, actions from the active collection, or all scene actions. BSP (Map) Import: Imports .bsp map geometry. Reads associated .r3m (materials), .r3t (textures), and .ebp (entities, collision) files (must be same base name, same folder). Locates entity assets by parsing .rpk archives found in ../Entity/ relative to the BSP's directory. Instantiates map geometry, materials (replicating many R3M effects), and R3E entities. Includes an option to import and display LDR lightmaps from Lgt.r3t files. There is also an option for creating a visualization of the actual BSP structure of the map by creating boxes with the nodes' dimensions and leaves with the appropriate geometry, however this will most certainly make the Blender scene run very slow (this option is not necessary to see the actual map at all if that's what you want). R3E (Entity) Import: Imports .r3e files together with their associated .r3m and .r3t files. Also imports animations, if present. Installation: Download the repository as a .zip file. Or simply download the embed file here. In Blender, go to Edit > Preferences > Add-ons. Click Install... and select the downloaded .zip file. Enable the "RF Online importer/exporter" addon by checking the box next to it. Dependencies (only necessary if you want to manually try the BSP export option) DDS Export (.bsp): Exporting BSPs requires ImageMagick to be installed and accessible in your system's PATH. The addon uses it to convert textures to DDS format. Download from: https://imagemagick.org/script/download.php Important: During installation, ensure you check the option to "Install legacy utilities (e.g., convert)" as the addon uses the magick convert command. How to Use: Import: Find the RF Online importers under File > Import > ... (MSH, BN Skeleton, ANI, BSP, R3E). Export: Find the RF Online exporters under File > Export > ... (MSH, BN Skeleton, ANI). Operator Options: Each operator has options. Pay attention to options like: MSH Export: Mesh Format to Export (Standard/MESH08), Collection Type to Export. ANI Import: Apply to Selected Objects, Ignore Not Found Objects. ANI Export: Action(s) to Export. BN Export: Export only selected. Debug options are available for troubleshooting. If turned on, open Blender's console to see the messages. Expected File Structure & Naming Conventions The addon relies on specific file names and relative folder locations to find associated assets: BSP Import (map.bsp): Needs map.r3m, map.r3t, mapLgt.r3t (optional), map.ebp in the same folder. Needs entity RPK archives (e.g., entity.rpk, monster.rpk) located in ../Entity/ relative to the map.bsp folder. The addon parses these RPKs to find the .r3e, .r3m, .r3t, etc., files for map entities. MSH Import (mesh.msh): Will look for texture paths defined within the MSH. If not found directly, it attempts to find textures in .rfs archives located in ../Tex/ relative to the .msh file's folder. BN Import (skeleton.bn): Needs skeleton.bbx in the same folder to read the proper skeleton name and overall bounding box. Export Naming:MSH Export: Selected Objects: Uses the filename you provide in the export dialog (e.g., my_export.msh). Active Collection / All Collections: Uses the collection name as the base filename in the selected directory (e.g., exporting a collection named "Props" to D:/Exports/ results in D:/Exports/Props.msh). Any collection named "bone shapes" is ignored and not exported when present. This is done to prevent the exportation of bone shapes as new .msh files. BN Export: Similar to MSH Export (uses selected armature name or collection name). Writes both .bn and .bbx files (e.g., skeleton.bn, skeleton.bbx). ANI Export: Uses the Blender Action name as the filename in the selected directory (e.g., an action named "Walk_Cycle" exports as Walk_Cycle.ani). Current Limitations / Disclaimer: BSP Export is DISABLED: While the addon includes the code for that, the operator to export a full .bsp map (including geometry, materials, entities, and baked lightmaps) is currently disabled in this release. BSP export is extremely complex, and this feature is incomplete. Performance: Importing very large maps or exporting complex scenes may take time due to Python processing. You can see the importing progress if you've opened Blender's console before importing a map. R3M Effects: While many material effects are replicated using shader nodes, perfect 1:1 visual parity with the original D3D8 fixed-function pipeline can be challenging. MSH exporter does not export effects currently. Download Link: https://github.com/Cardboard-box-a/cbb-rf-online-addon (download the repo as a zip), or the file embed here. Bug Reports/Suggestions: [The github's Issue page might be more suitable for keeping tracking of possible issues] Overall the import part of the addon expects that you are using it to import files from a real game client, with the original folder structure. Meshes, for example, can be imported without their associated textures if the original folder structure is not present. The .MSH exporter splits meshes that have more than 65k vertices automatically which has been tested by the .msh importer itself, but actual experience in the game is welcome to be known. Uploaded in this post itself is a zip containing ImHex patterns for some of the file formats I've worked on. Hopefully this addon will prove useful for creating custom content for such an old game, or at least to satisfy the curiosity of what the game looks like behind the curtains. Patterns.zip1 point -
Bumping this, if anyone would be an absolute unit to solve the animations it would be greatly appreciated! 🙃1 point
-
Did you ever figure out the animations format? I'd love to get access to the animations for some stuff but of course, the MOT files are formatted differently 😔1 point
-
use my plugin for Noesis arc_zlib_plzp_lang_vfs.py (which I mentioned earlier) it recursively unpacks all files, at the output you will get *.png, *.wav, *.pm3, *.vram, *.text, *.pvr and e.t.c You can also find a link to the plugin for 3D models *.vram above in the same topic. (*.pvr can open in PVRTexTool)1 point
-
zlib_DeCompressor.pyHere the DeCompressor update, now works with every file1 point
-
Mostly, PNG files are decompressed, so it's fairly easy to edit and reimport them. However, you need to compress your PNG files using the site iLoveIMG. For example, if the original PNG is 10 KB, your PNG must be 10 KB or less, so you will need to compress it on the site. I’ve attached 3 files: Two BMS scripts: One script will unpack the data, decompressing all files. The other script will unpack the file without decompressing it (this is the one you should use for reimporting; reimport with -r, not reimport 2 in quick bms). A Python script (.py): This program decompresses and compresses zlib files individually. I have set a compression level to reduce the file size even further. Use this if you need to handle compressed files. zlib_DeCompressor.py BMS.ZIP1 point
-
The WAVE files just use XBox ADPCM (not that obscure) and you can play and convert them with Foobar + vgmstream (note: some files don't contain audio). You don't really need to do anything else.1 point
-
1 point
-
Has anyone managed to extract the trading card images? I tried using the script for the 3D models. but it just doesn't work.1 point
ResHax.com: Empowering Curious Minds in the World of Reverse Engineering
Delving into the Art of Code Unraveling: ResHax.com - Your Gateway to the Thrilling World of Reverse Engineering, Where Curiosity Meets Innovation!